搜索
您的当前位置:首页正文

Green Function Approach to Interface States in Band Inverted Junctions

2021-09-26 来源:步旅网
UCM-37-1994

Greenfunctionapproachtointerfacestatesinband-inverted

junctions

FranciscoDom´ınguez-Adame

DepartamentodeF´ısicadeMateriales,FacultaddeF´ısicas,UniversidadComplutense,E-28040

Madrid,Spain

arXiv:cond-mat/9410098v1 26 Oct 1994TypesetusingREVTEX

1

Narrow-gapsemiconductorcompoundslikePb1−xSnxTeandHg1−xCdxTepresentbandinversionundercompositionalvariation.Inaband-invertedheterojunctionthefundamentalgap,definedasthedifferencebetweenΓ6andΓ8energies,hasoppositesignsoneachside[1].TypeIIIsuperlatticeswithbandinversionofCdTe/HgTeandPbTe/SnTehasbeensuccessfullygrowninthepast[2,3].Oneofthemostconspicuouscharacteristicofband-invertedheterojunctionsistheexistenceofinterfacestateslyingwithinthefundamentalgap,providedthatthetwogapsoverlap[4–8].InIV-VIcompoundsthoseinterfacestatesareproperlydecribedbymeansofatwo-bandmodelusingtheeffectivek·papproximation.Onthecontrary,theanalysisismorecomplexinII-VIcompoundsduetomixingwithheavy-holestatessincenoncentro-symmetryeffectsarenotnegligibleinthiscase.Theequationgoverningconduction-andvalence-bandenvelope-functionsinasimpletwo-bandmodel,neglectingfar-bandcorrections,isaDirac-likeequation.Exactsolutionscanthenbefoundinviewofthisanalogybecauseonecanuseelaboratedtechniqueslikethoserelatedtosupersymmetricquantummechanics[7].Theaimofthispaperistopresentanalternativewayofsolutionbasedonthesocalledpointinteractionpotentials[9,10](anyarbitrarysharplypeakedpotentialapproachingtheδ-functionlimit)alongwithaGreenfunctionmethod.Webelievethatourtreatmentgivesaveryintuitiveexplanationoftheoriginofinterfacesstateswhileotherapproachesmayobscurethewayhowthosestatesarise.Moreover,theeffectsofexternalelectricandmagneticfieldscanbeincludedinastraightforwardfashion,aswewillshowlater.

Intheeffective-massapproximationtheelectronicwavefunctionisasumofproductsofBlochfunctionsattheband-edgewithslowlyvaryingenvelope-functions.Thetwo-bandmodelHamiltonianintheabsenceofexternalfieldsisoftheform

H=v⊥αypy+vzαzpz+

1

elementsareconstantthroughthewholeheterostructureduetothesimilarityofthezonecentreinbothsemiconductors.Sincethegapdependsonlyuponz,thetransversalmomen-tumisaconstantofmotionandwecansettheYaxisparalleltothiscomponent.Inthetwo-bandcasetherearefourenvelope-functionsincludingspinandwearrangetheminafourcomponentvectorF(r).Thisvectorsatisfiestheequation

HF(r)=[E−V(z)]F(r),

(2)

whereV(z)givesthepositionofthegapcentre.Itisunderstoodthatthegrowthdirectionis[111].ThewayV(z)changesfromonelayertoanotherisnotwellunderstoodbut,assumingthattheinterfacestatesspreadoverdistancesmuchlargerthantheinterfaceregion,wecanconfidentlyconsideritasastep-likefunction.Accordinglywetake

EG(z)=EGLθ(−z)+EGRθ(z),V(z)=VLθ(−z)+VRθ(z),

(3a)(3b)

θbeingtheHeavisidestepfunction.Here,thesubscriptsLandRmeanleftandrightsidesoftheheterojunction,respectively.

Aswehavealreadymentionedabove,themomentumperpendiculartotheinterfaceisconserved,andthereforewelookforsolutionsoftheform

F(r)=F(z)exp

󰀆

i

2

βEG(z)−E+V(z)F(z)=0.

󰀊

(5)

AsimplewaytosolvethisequationistheFeynman-Gell-Mannansatz[11]

F(z)=αyv⊥p⊥+αzvzpz+

󰀆

1

dz2

+

1

4

22

EG(z)2−[E−V(z)]2+v⊥p⊥−i∆αz(β−λ)δ(z)χ(z)=0.

󰀄

󰀁

(7)

3

Forbrevitywehavedefined

EGR−EGL

∆=

E,

(8b)

GR−EGL

andwehaveusedtherelationshipsdθ(±z)/dz=±δ(z).Notethatinthecaseofband-invertedheterojunctionEGREGL<0.

ItisworthmentioningthatEq.(7)isnothingbutaKlein-Gordonequationwithscalar-likeandelectrostatic-liketermsdependingonposition(likearelativisticspinlessparticlewithaposition-dependentmassinanelectricfieldasoccursinQED)plusapointinteractionpotentialarisingfromthediscontinuityofthegapandthegapcentre.Theoccurrenceofthisshort-rangepotentialmakesitpossibletheexistenceofboundstatesdeepinthegap.InordertofindtheboundstatesweuseaGreenfunctionformalism,similartopreviouslyusedinthecaseoftheDiracequationwithpointinteractionpotentials[12].Tothisend,letusconsidertheGreenfunctionassociatedtoEq.(7)withoutthepointinteractionpotential

󰀉

∂2

1

h¯2v2z

󰀂

Diracequationforpointintereactionpotentials(seeRef.[9]andreferencestherein).OncetheGreenfunctionisknown,the4-vectorχ(z)canbeobtainandusingEqs.(4)and(6)theenvelope-functionsarefinallydetermined.Boundstatelevelscanbecomputedtakingthelimitz→0inEq.(11).Toobtainnontrivialsolutionswerequirethe4×4determinanttovanish.Thus,usingthedefinitionsof∆andλgivenin(8)weobtain

1

4

(EGR−EGL)2−(VR−VL)2󰀄

=

󰀃

1

W[u+,u−]

,(13)

whereW[u+,u−]istheWronskianofthetwosolutions.Definingtworealparameters

K1

L=

1

h¯v󰀇

EGR2−(E−VR)2+v2⊥p2⊥,

z4

(14)

thetwoindependentsolutionsareu+=exp(−KRz)andu−=exp(KLz)sothatg(0,0;E)=2/(KR+KL).UsingEq.(12)onefinallyobtains

K1

1

R+KL=

potentials.Nevertheless,itisclearthatappliedelectricormagneticfieldscanbeeasilyhandledwithminormodificationsoftheequations.NotethatthecrucialpointisthatoneassumesthattheKlein-GordonequationwithoutthepointinteractionpotentialarisingfromtheabruptinterfacecanbesolvedexactlyandthecorrespondingGreenfunctionsisexplicitlywrittenout.Thisissoforalargevarietyofelectricandmagneticfieldconfiguration,aspointedoutinRef.[13].Thus,forinstance,itispossibletoinvestigateLandaulevelsinband-invertedheterojunctionsinarathersimpleway,insteadofusingmoreelaboratedmathematicaltreatments,asthoserecentlycarriedoutbyAggasi[14].Inaddition,itisalsopossibletostudyconfinedStarkeffect,atopicwhichremainsopenintheliterature.Thesecondaspectweremarkisthefactthatthereisnoneedtouseanabruptheterojunction

−1−1

model,simulatedbyasteppotential.TheonlyrequirementisthatKRandKLmust

bemuchlargerthantheinterfaceitself,animplicitassumptionwhenusingtheenvelope-functionformalism.Qualitativelytheprofileoftheheterojunctionissoliton-like[7]and,asaconsequence,itderivativeisasharplypeakedfunction.Thustheintegralequation(11)canbesolvedbyalimitingprocess,inanalogouswaytotheDiracequationforsharplypeakedfunctionsapproachingtheδ-functionlimit[12].Toconclude,wefeelthattheapproachwedevelopedholdsinalargevarietyofcasesofpracticalinterestanditmayhelpinabetterunderstandingofinterfacestatesinband-invertedheterojunctions.

ACKNOWLEDGMENTS

ThisworkissupportedbyUCMthroughprojectPR161/93-4811.

6

REFERENCES

[1]K.Seeger,SemiconductorPhyscis,(SpringerVerlag,Berlin,1991).[2]J.P.Faurie,IEEEJ.QuantumElectron.QE-22,1656(1986).[3]A.Ishida,M.Aoki,andH.Fujiyasu,J.Appl.Phys.58,1901(1985).[4]B.A.VolkovandO.A.Pankratov,JETPLett.42,178(1985).[5]V.KorenmanandH.D.Drew,Phys.Rev.B35,6446(1987).[6]D.AggasiandV.Korenman,Phys.Rev.B37,10095(1988).[7]O.A.Pankratov,Semicond.Sci.Technol.5,S204(1990).

[8]V.I.LitvinovandM.Oszwaldowski,Semicond.Sci.Technol.5,S364(1990).[9]F.Dom´ınguez-AdameandE.Maci´a,J.Phys.A:Math.Gen.22,L419(1989).[10]E.Maci´aandF.Dom´ınguez-Adame,J.Phys.A:Math.Gen.24,59(1991).[11]R.P.FeynmanandM.Gell-Mann,Phys.Rev.109,193(1958).

[12]B.Mend´ezandF.Dom´ınguez-Adame,J.Phys.A:Math.Gen.25,2065(1992).[13]B.M´endezandF.Dom!nguez-Adame,IlNuovoCimentoB107,489(1992).[14]D.Agassi,Phys.Rev.B49,10393(1994).

7

因篇幅问题不能全部显示,请点此查看更多更全内容

Top