EffectsofUltrasonicNanocrystalSurfaceModification(UNSM)onResidualStressState
andFatigueStrengthofAISI304
A.Cherif,Y.Pyoun,andB.Scholtes
(SubmittedJanuary22,2008;inrevisedformJune2,2008)
Theeffectsofanewmechanicalsurfacetreatmentmethod,calledultrasonicnanocrystalsurfacemodifi-cation(UNSM),onnear-surfacemicrostructuresandresidualstressstatesaswellasonthefatiguebehaviorofanausteniticsteelAISI304areinvestigatedanddiscussed.Theresultsarecomparedwithconsequencesofothermechanicalsurfacetreatmentmethodssuchasdeeprollingorshotpeening.
Keywords
AISI304,deeprolling,fatigue,residualstress,shotpeening,ultrasonicnanocrystalsurfacemodification(UNSM),workhardening
1.Introduction
Itiswellestablishedthatthefatiguebehaviorofmetallicmaterialscanbesignificantlyimprovedbyappropriatemechanicalsurfacetreatments.Thisisduetotheformationofmacroscopiccompressiveresidualstressesandworkhardeningatthesurfaceandinnear-surfaceregionscontrib-utingtoinhibitorretardthedamageprocessoffatiguecrackinitiationaswellasoffatiguecrackgrowth(Ref1-5).Differentmethodssuchasdeeprolling,shotpeening,andlaser-shockpeeninghavebeendeveloped.Theirconsequencesonnear-surfacematerialspropertiesaswellasonstrengthandlifetimeunderspecificloadingconditionshaveintensivelybeenstudied(Ref6,7).
Ultrasonicnanocrystalsurfacemodification(UNSM)tech-nologyisanewkindofmechanicalsurfacetreatmenttechnology(Fig.1).ThemainconceptandmechanismofUNSMisasfollows:Atungstencarbideballattachedtoanultrasonicdevicestrikesthesurfaceofaworkpiece20,000ormoretimespersecondwith1000to10,000shotspersquaremillimeter.Thesestrikes,whichcanbedescribedasmicrocoldforging,causesevereplasticdeformationtosurfacelayersand,therefore,inducenanocrystalmicrostructures.However,noinformationaboutresidualstressdistributionscomparedwithconventionalmethodsisavailable(Ref8).Thenanomicrostructuremodificationofsurfacelayerscanimprovestrength(hardness)andductility(toughness)oftheworkpiecesimultaneouslyaccordingtotheHall-Petchrelationship.
Thisprocessalsoimprovessurfaceroughnessandinducescompressiveresidualstressinsurfacelayers,whichwillinturnincreasefatigueresistanceoftheworkpiece.Inthisarticle,near-surfacepropertiesofUNSM-treatedAISI304arecom-paredwiththeresultsofanalogousinvestigationsofshot-peenedanddeep-rolledspecimensandthestabilityoftheproprietiesduringfatigueloadingisstudied.
2.MaterialsandExperimentalProcedures
TheinvestigatedmaterialwasausteniticstainlesssteelAISI304withthechemicalcomposition:0.03%C,0.58%Si,1.14%Mn,0.03%P,0.03%S,18.3%Cr,8.8%Ni,and0.06%N.Thematerialwassolutiontreated,quenched,andwarmrolledtocylindricalbars(diameterof14mm).Themicrostructurewasfullyausteniticwithanaveragegrainsizeof70lm.
Cylindricalfatiguesamples(Fig.2)withadiameterof7mmandagagelengthof15mmwereusedforfatigueteststoobtainS/N-curves.Alltestswerecarriedoutunderstress-controlledtension-compressionloadingatastressratioofR=À1andatroomtemperature.Residualstressdepthprofilesweredeterminedbyx-raydiffraction(XRD)techniqueusingtheclassicalsin2w-methodwithCrKaradiationatthe{220}-planesand(1/2)s2=6.05910À6mm2/Naselasticconstant.Thex-raybeamhadadiameterof1mm.Near-surfaceworkhardeningwascharacterizedbytheFWHMvaluesofthex-raydiffractionpeaks.AllresidualstressandFWHMvaluesweremeasuredinlongitudinaldirectionofthespecimens.ResidualstressandFWHM-depthprofilesweredeterminedbysucces-siveelectrochemicalremovalofmaterialwithoutcarryingoutastresscorrection.Itiswellknownthatinthecaseinvestigatedhereonlynegligibleerrorsoccurwhenmeasuringinnear-surfaceareas(Ref10).
Vickershardnessmeasurementswerecarriedoutonpol-ishedcrosssectionsofthespecimens.
SurfaceroughnesswasanalyzedusingaPerthometerS8P(Mahr).
Martensitecontentwasdeterminedbyastandardprocedureusingx-raydiffractiontechnique.Twointerferencepeaksofausteniteandmartensite,respectively,weretakenintoaccount.
A.CherifandB.Scholtes,InstituteofMaterialEngineering,Univer-sityofKassel,Kassel,Germany;andY.Pyoun,DesignMecha/Mec-hanicalEngineeringDepartment,SunMoonUniversity,AsanCity336-708,Korea.Contacte-mail:echerif@uni-kassel.de.
282—Volume19(2)March2010JournalofMaterialsEngineeringandPerformance
3.ExperimentalResultsandDiscussion
Figure3showsthesurfacetopographyprofileofthespecimensbeforeandafterUNSMtreatment(measuredinlongitudinaldirectionintwodifferentpositions).Itcanbeseenfromthefigurethatthetoolingmarksduetotheturningprocesshavepartiallybeenflattened.Asaconsequence,surfaceroughnessRzimprovedfrom1.7to1.3lm.Figure4showsthemicrographofthesurface.
ResidualstressandFWHM-depthdistributionsweredeter-minedatthreedifferentlocationsinthegagelengthofthespecimen(Positions1-3,center,and±5mm).
TheresultsarepresentedinFig.5and6.CompressiveresidualstressesaswellasincreasedFWHM-valuesofx-raydiffractionpeakswereobservedatthesurfaceandinnear-surfaceregioninallcases.
ThestressvaluesimmediatelyatthesurfacevarybetweenÀ1100MPa(Position3)andÀ635MPa(Position1).Withincreasingdistancefromsurface,residualstressamounts
Fig.1UNSMsystem(Ref8,9)
Fig.2AISI304specimen
Fig.3SurfacetopographyprofilebeforeandafterUNSM-treatedAISI304JournalofMaterialsEngineeringandPerformancedecreaseaswellastheirrangeofvariation.Measurementsalongthecircumferenceofthespecimenshowedonlyasmallresidualstressvariation.
Thethicknessofthesurfacelayerexhibitingcompressiveresidualstressisapproximately0.4mm.
Fig.4SEMmicrographofUNSM-treatedAISI304atthesurface
Fig.5ResidualstressdepthprofilesofUNSM-treatedAISI304atdifferentsurfacepositions
Fig.6FWHMdepthprofilesofUNSM-treatedAISI304atdiffer-entsurfacepositions
Volume19(2)March2010—283
Fig.7S/Nplotofroomtemperature-fatiguedAISI304specimensindifferentsurfacetreatmentconditions(UNSM,deeprolled(Ref11),untreated)Fig.8VickershardnessdepthprofileofAISI304afterdifferentmechanicalsurfacetreatment[DR:deeprolled(Ref11),SP:shotpe-ened(Ref12)]
TheFWHMvaluesinthenear-surfaceregionsincreasefromapproximately0.9°inthebulkto2°atthesurface.
Similardepthdistributionsweremeasuredatallthreemeasuringpositions.However,position3,withmaximumcompressiveresidualstress,showsslightlyhigherFWHMvaluesnearthesurfacethanintheothercases.Correspondingtotheresidualstressdepthdistribution,thethicknessoftheaffectedsurfacelayerisabout0.4mm.
Alimitednumberofspecimenswereavailableforfatiguetests.Consequently,theS/N-curvesshowninFig.7allowonlyaroughestimationofthefatiguestrengthofUNSM-treatedspecimenscomparedtotheuntreatedandthedeep-rolledstate.FromFig.7,onecanconcludethatUNSMtreatmentclearlyimprovesfatiguestrengthandlifetimeinthehighaswellasinthelowcyclefatigueregimecomparedtothestartingconditionwithaturnedsurface,butitisnotaseffectiveasdeeprolling.Onehas,however,totakeintoaccountthatprocessparameters,althoughrealisticallychosen,werenotoptimizedforhighestfatigueperformance,whichlimitsthevalidityofFig.7.
ForamoredetailedassessmentoftheconsequencesofUNSMtreatmentinFig.8to10,characteristicnear-surfacepropertiesmeasuredinthecenterofthegagelengtharecomparedwiththecharacteristicsofshot-peenedordeep-rolledspecimens(Ref7,11,12).Figure8showsthatdistinctdifferencesexistbetweenthemeasuredhardnessdepthdistri-
284—Volume19(2)March2010Fig.9ResidualstressdepthprofilesofAISI304afterdifferentmechanicalsurfacetreatment[DR:deeprolled(Ref11),SP:shotpe-ened(Ref7)]
Fig.10FWHMdepthprofilesofAISI304afterdifferentmechani-calsurfacetreatment[DR:deeprolled(Ref11),SP:shotpeened(Ref7)]
butions.Shotpeeningproducesthehighesthardnessvaluesimmediatelyatthesurface,whereasinthecaseofdeeprolling,athickersurfacelayerisaffected.Itisinterestingtonotethatthisisincontrasttotheresidualstressdepthdistribution(seeFig.9)andFWHMdepthdistribution(seeFig.10),wherespecimenstreatedbyUNSMtechniqueshowthehighestvaluesinnear-surfaceregions.
Thehardnessvaluesincreasefromapproximately220HVintheunaffectedbulkofthematerialupto390HVatthesurfaceafterUNSMtreatment.
Shotpeeningleadstothehighestsurfacehardnessofabout450HV.Theinfluenceofdeeprollingonhardnessachievesadepthofabout0.55mmcomparedto0.3mmafterUNSMtreatmentaswellasofshotpeening;however,hardnessvaluesimmediatelyatthesurfacearelowerthanintheothercases.FromFig.9itisevidentthatresidualstressdepthdistribu-tionsofUNSM-treatedanddeep-rolledspecimensareverysimilarwithhigheramountsafterUNSMtreatmentatthesurfaceandsomewhatloweramountsatgreaterdistancesfromthesurface.Theresidualstressvaluesofshot-peenedspeci-mensareclearlysmaller,andtheaffectedsurfacelayeristhinner.
SimilarobservationscanbemaderegardingthedepthdistributionsofFWHMvalues.Again,UNSMtreatmentleadstohighervaluesatthesurface,andthedeep-rolledspecimensshowthethickestaffectedsurfacelayer.Immediatelyatthe
JournalofMaterialsEngineeringandPerformance
Fig.11Martensitecontentdepthprofileafterdifferentkindsofsur-facetreatment[DR:deeprolled(Ref7),SP:shotpeened(Ref7)]
Fig.12ResidualstressdepthprofilesofUNSM-treatedAISI304unloadedandfatiguedtohalfthenumberofcyclestofailure(stressamplitudera=340MPa)
surface,shotpeeningleadstohigherFWHMvaluesthandeeprolling(Ref7;Fig.11).
Asaconsequenceofthesurfacetreatmentsapplied,mechanicallyinducedmartensiteisformedinthesurfacelayerofAISI304.Themeasuredmartensitecontentstronglydependsonthetypeoftheprocessapplied.Shotpeeningleadstothehighesttransformationeffectsatandbelowthesurface.UNSMtreatmentleadstoamartensitecontentofapproximately35%immediatelyatthesurface.Thisvaluecontinuouslydecreaseswithincreasingdistancefromthesurface;exceptforlayersveryclosetothesurface,thevalueisalwayssmallerthanforshotpeeningordeeprolling.
Figures12and13showtherelaxationbehaviorofmacro-scopiccompressiveresidualstressesaswellasofFWHMvaluesofUNSM-treatedspecimensfatiguedtohalfthenumberofcyclestofailure.Oneobservesthatcyclicloadingatastressamplitudeof340MPa(Nf=8000cycles)leadstoareductionofsurfacecompressiveresidualstressesbyapproximately60%.AsimilarresidualstressrelaxationwasalsoobservedbelowthespecimenÕssurface.
FWHMvaluesrelaxtoo,indicatingthatmicrostructuralalterationsoccurinnear-surfacelayersduetothecyclicloadingprocess.However,theworkhardeningeffectofUNSMtreatmentisstillvisibleafterhalfthenumberofcyclestofailure.
JournalofMaterialsEngineeringandPerformanceFig.13FWHMdepthprofilesofUNSM-treatedAISI304unloadedandfatiguedtohalfthenumberofcyclestofailure(stressamplitudera=340MPa)
Fig.14ResidualstressrelaxationatthesurfaceofUNSM-treatedAISI304duringstress-controlledfatigueatroomtemperaturefordifferentstressamplitudes
Fig.15FWHMvaluerelaxationatthesurfaceofUNSM-treatedAISI304duringstress-controlledfatigueatroomtemperaturefordifferentstressamplitudes
Figures14and15showtherelaxationofmacroscopiccompressiveresidualstressesaswellasofFWHMvaluesatthesurfaceofUNSM-treatedspecimensasafunctionofthenumber
Volume19(2)March2010—285
ofloadingcyclesfortwodifferentstressamplitudes.Forthelowerstressamplitudeof340MPa,residualstressremainsstableduringthefirst1000loadingcyclesandthendecreaseuntilfractureoccurs.Ontheotherhand,forastressamplitudeof370MPa,leadingtofracturealreadyafterapproximately1000cycles,acontinuousresidualstressrelaxationisobserved.Forbothloadingamplitudes,FWHMvaluesdecreasewithincreas-ingnumberofcycles,indicatingacontinuousalterationofUNSM-inducedmicrostructuresduringfatigueloading.
4.Conclusions
TheexperimentspresentedinthisarticlewereorientedtowardgainingbasicinformationabouttheeffectsofUNSMtreatmentincomparisonwithmoretraditionalandwell-establishedmechanicalsurfacetreatmentmethodsofausteniticsteelAISI304,i.e.,shotpeeninganddeeprolling.Asaresultofthetests,itisevidentthatthenear-surfacemicrostructuresachievedduringtheUNSMprocessarecomparablewithpropertiesofshot-peened,deep-rolled,orlasershock-peenedlayers.Firstofall,ithastobementionedthatasurfacelayerwithhighcompressiveresidualstressesisformedtogetherwitharemarkablestrain-hardeningeffect.Forthematerialinvesti-gatedinthisworkalsoamechanicallyinducedphasetransformationfromaustenitetomartensitecouldbedetected.Thedifferencesofthedepthdistributionsofthepropertiesmeasuredhavetobeattributednotonlytothecharacteristicfeaturesoftheprocessescomparedbutalsototheindividualprocessparametersapplied.Consequently,nogeneralconclu-sionsshouldbedrawnabouttheeffectivenessofindividualprocessestocreatecompressiveresidualstresses,strainhard-ening,orotherbeneficialeffectsinnear-surfacelayers.Itisratheraquestionofchoosingtherightmethodtogetherwithappropriateprocessparameterstoachieveoptimumconditionsinindividualcases.Itisthereforenotsurprisingthattheconsequencesofcyclicloadingonnear-surfacepropertiesofUNSM-treatedAISI304areinagreementwithobservationsmadeforothermechanicalsurfacetreatmentsaswell.Forthestressamplitudesapplied,apartialrelaxationofstrainharden-ingaswellasofmacroscopicresidualstresscouldbedetected.Altogether,itcanbeconcludedthatUNSMtreatmentgivesrisetoexcellentnear-surfacematerialsmicrostructures.
286—Volume19(2)March2010Becauseoftheoutstandingimportanceofthepropertiesofnear-surfacelayersforstrengthandlifetimeofcomponents,itcanthereforebeaverypowerfultooltoproducehigh-strength,light-weightstructures.
References
1.A.Niku-Lari,Ed.,AdvancesinSurfaceTreatments,PergamonPress,Oxford,1987
2.B.Scholtes,AssessmentofResidualStresses,StructuralandResidualStressAnalysesbyNondestructiveMethods,V.Hauk,Ed.,Elsevier,Amsterdam,1997,p590–632
3.L.Wagner,MechanicalSurfaceTreatmentsonTitanium,AluminumandMagnesiumAlloys,Mater.Sci.Eng.A,1999,263,p210–2164.B.ScholtesandE.Macherauch,AuswirkungmechanischerRands-chichtverformungenaufdasFestigkeitsverhaltenmetallischerWerkst-offe,Z.Metallkd.,1986,77(5),S.322
5.V.Schultze,ModernMechanicalSurfaceTreatment,Wiley-VCH,Weinheim,2005
6.R.K.Nalla,I.Altenberger,I.Noster,G.Y.Lui,B.Scholtes,andR.O.Ritchie,OntheInfluenceofMechanicalSurfaceTreatments—DeepRollingandLaserShockPeening—ontheFatigueBehaviourofTi-6Al-4VatAmbientandElevatedTemperatures,Mater.Sci.Eng.A,2003,355,p216–230
7.I.Altenberger,B.Scholtes,U.Martin,andH.Oettel,CycleDeformationandNearSurfaceMicrostructuresofShotPeenedorDeepRolledAusteniticSteelAISI304,Mater.Sci.Eng.A,1999,264,p1–16
8.Y.-S.Pyun,H.S.Kim,K.G.Son,G.H.Song,M.K.Kim,J.H.KangB.U.Choi,J.Park,I.H.Cho,C.S.Kim,J.H.Park,andJ.Kinney,DevelopmentofD2ToolSteelTrimmingKniveswithNanoscaleMicrostructure,ProceedingsoftheAISTechConference,Vol.2,2005,p465–474
9.C.-M.Suh,G.-H.Song,andY.-S.Pyoun,FatigueandMechanicalCharacteristicsofNano-StructuredToolSteelbyUltrasonicColdForgingTechnology,Mater.Sci.Eng.A,2007,443,p101–106
10.B.ScholtesandE.Macherauch,Eigenspannungsanalysenunter
partiellerProbenzersto¨rungmitHilfevonRo¨ntgenographischerMethoden,DeutscherVerbandfu¨rMaterialpru¨fungE.V.,Berlin,1987,p301–312
11.I.NikitinandI.Altenberger,ComparisonoftheFatigueBehaviorand
ResidualStressStabilityofLaser-ShockPeenedandDeepRolledAusteniticStainlessSteelAISI304intheTemperatureRange25–600°C,Mater.Sci.Eng.A,2007,465,p176–182
12.I.Altenberger,MikrostrukturelleUntersuchungenmechanischrands-chichtverfestigterBereicheschwingendbeanspruchtermetallischerWerkstoffe,ForschungsberichteausdemInstitutfu¨rWerkstofftechnik,MetallischeWerkstoffe,1999
JournalofMaterialsEngineeringandPerformance
因篇幅问题不能全部显示,请点此查看更多更全内容