搜索
您的当前位置:首页正文

高温合金在能源工业领域中的应用现状与发展

2023-06-19 来源:步旅网
465

5

Vol.46

No.5

2010

513—527ACTAMETALLURGICASINICAMay.2010pp.513–527

(

,

110016)

.

,

,

;

,

;

,

;,

;

,

,

4—150

,

CO2,H2S

,

.

.

,

,

,

,

,

TG111

A

0412−1961(2010)05−0513−15

THECURRENTSITUATIONOFAPPLICATIONANDDEVELOPMENTFIELDSOFENERGYOFSUPERALLOYSINDUSTRY

INTHEGUOJianting

InstituteofMetalResearch,ChineseAcademyofSciences,Shenyang110016

Correspondent:GUOJianting,professor,Tel:(024)23971917,E-mail:jtguo@imr.ac.cn

Manuscriptreceived2009–12–25

ABSTRACTSuperalloysareextensivelyappliedinthefieldsofenergyindustry.Inthehighparameterultra–supercriticalboilerusedforcoal–firedgeneration,superheater/reheatertubesmustbemadeofsuperalloyswhichmeettherequirementofgoodcreepresistant,goodfire–sidecorrosionresistantandsteam–sideoxidationresistantproperties.Ingasturbineengineusedforgaspower,turbinebladesandguidevanesshouldbemadeofhot–corrosionresistantsuperalloyswhichmustmeettherequirementswithrespecttoexcellenthightemperaturecorrosionresistanceandlong–termmicrostructuralstability.Inthefieldofnuclearpower,heatexchangetubesusedforsteamgeneratorrequiresuperalloyswithexcellentsolutioncorrosionresistance.Inthefieldofcoalgasificationandenergyconservationandpollutionreduction,thesuperalloyswithexcellenthotcorrosionresistantandhightemperaturewearresistantpropertiesarewidelyapplied.Inpetroleumexploitation,especiallyindeepmining,drillingtoolsmustbemadeofcorrosionresistantandwearresistantsuperalloysbecause

ofthesourenvironment,thetemperatureof4—150

andtheexistencesofCOon.Thispapermakesabriefintroductiononthecurrentsituationofapplication2,Hand2S,sandandsodevelopmentofthesuperalloysathomeandabroadinthesefields.

KEYWORDSsuperalloy,energyindustry,coalpower,gaspower,nuclearpower,

petroleumexploitation

,

1

,

,

,

.

.

.

2002

,

,

.

*

:2009–12–25.2000

:

,

,1938

,

67%,

40%

.

1[1]

,2000

DOI:10.3724/SP.J.1037.2009.00860

69.3%.

,

514

46

[1]2000—2020

Table1Energystructurein2000—2020periods[1]

1

YearInstalledHydropower

Coalcapacity,MW

%power,%200031932024.869.3201059000025.863.3202096000027.158.6,

24.8%.,

0.7%0.3%.

10—20

,

,

;

;

1000MW

[1]

.

,

.

2020

,

.

69.3%

58.6%,

24.8%

27.1%,0.7%

7.5%,

0.3%4.2%.

,

,

.

1.1

,

,

100MW,

,

300MW

50%.2007

357g/(kW·h),

10g/(kW·h),

2.7%,

,

45—55g/(kW·h).

,

:70%

,20%

,52%SO2[2].

.

,

,

,

.

2[3].

,

(

)

,

,

.2005,

33.5MPa,610/630/630

,

2015

40MPa,

700

/720

/720

.,

.

,

,

,

,

[4]

,

[5]

.

,

22.115MPa

374.15

.

,

23.5MPa/

538

.

29.5MPa/560

NuclearNaturalgasNewenergyOtherpower,%power,%resource,%

fuel,%0.70.30.14.82.35.40.72.57.54.20.12.5

2

[3]Table2Netefficiencyandcoalconsumptionofvariouscoal

powergenerators[3]

Coalpower

NetCoalconsumption

generator

efficiency,%

g/(kW·h)Subcritical,17MPa/538

37—38330—340Supercritical,24MPa/538

40—41310—320Ultra–supercritical,

44—45

290—300

30MPa/566

/566

[6]

.

2

1

,

17MPa,

538

,

538

;

2

2

,

,

;

2

3,

,2,

566.

2

,,

.

1

,

0.029%;

1

,

0.021%,

,

SOx,NOxCO2

,

.

,

.

,

9%—12%Cr

,

650—750

,

.

3[7].

,

20%

Cr,

.

3

,Inconel6259%Mo3.7%Nb

,4

Co,MoNb

,

Ti

Al

,

,

4[7]

1[7].

GH2984[7]

.20

60

,

GH2984.

20

70

,

10

.

,GH2984

GH2984

,

[7]

.,

(Special

5

:

515

[7]3

Table3Chemicalcompositionsofsomesuperalloysusedinsuperheatertube[7]

(massfraction,%)

AlloyGH2984Inconel740Inconel617Nimonic263Inconel625

C0.04—0.080.060.090.04—0.08≤0.10

Cr18—2024.9721.6519—2120—23

Co–19.8012.019—21≤1.0

Mo1.8—2.20.588.725.6—6.18.0—10.0

Nb0.9—1.22.01––3.15—4.15

Ti0.9—1.21.690.311.9—2.4≤0.40

Al0.2—0.50.871.16≤0.60≤0.40

Fe32—340.71≤2.50≤0.70≤5.0

Si≤0.50.470.58≤0.4≤0.5

Mn≤0.50.300.54≤0.6≤0.5

NiBal.Bal.Bal.Bal.Bal.

[7]4

Table4Mechanicalpropertiesofsomesuperalloysusedforboilertube[7]

AlloyTensilepropertyatroomtemperatureσbMPa

σ0.2MPa686705514580

δ%26.630.048.043.0

ϕ%46.639.0–46.0

Tensilepropertyat700σbMPa745905651740

σ0.2MPa539650398490

Rupturestrength,MPa700

δ%34.437.040.026.0

ϕ%52.344.5–34.0

,700

,

3×104h149149162120

10×104h130130–100

GH2984Inconel740Inconel625Nimonic263

11071150960960

Note:thestandardheattreatmentofGH2984alloyis1100

650/16h,A.C.

/1h,A.C.+760/8h,50/hcooled,

263,

4.

Inconel625Nimonic263,

NimonicInconel

625.700Inconel740

,3×104

10×104h,650

,

750

,

1[7].

(3)

.

Cr

18%—20%,

,

Cr2O3.,

,

.

1GH2984,Inconel740

[7]

Nimonic263

(4)

.

700

/(0.1—1.8)

×104h

,

Fig.1Stress–rupturepropertiesofGH2984,Inconel740

andNimonic263alloysatdifferenttemperatures[7]

,

.

MetalsCorp.)2003

[8]

Inconel740

(5)

.

,

,

,

.

1.2

.GH2984

Fe(1)

[7]

:

Co

.

,

.

GH2984

Nimonic263

Co,Inconel740,Inconel617

12%—21%Co.

8×1010

2010m3,2020

1.7×108t,(1.8—2)×108t,

1.2×1011m3

[9]

.

(LNG)

GH2984

Fe

Fe

32%—34%,Ni

,3.GH2984

,

.

,

,

,,

.

.

(2)

.

,

650—750

.

700

.

51646

20

60

700.70

990

23MW

,1978

,80

GE

1100

MS6001B

,

32%,

40MW,

60%—70%.

,2002

GE

,

.2003

GE,

100

200MW

,

.

,

.

2006

,

280

,

4

1.626×10MW.F28,

1.09×104MW,

40.91×10MW,

,

,

[10,11]

.2006

45.99%,

[2]

.

,

7%

.

.

5—10a,

3.4×104MW

.

.

,

,

:(1)

,

,

;(2),

.

,

,

.

,

,

.

1.2.1

,

,

,

,

.

2[12]

GE

.

,

.

2

,

1

,

;

2

,

,

.

U500,U700,

U720,Ren´e77,IN738,IN738LC,GTD–111,IN939,MGA1400Mar–M421;Ren´e

[12]

2

Fig.2IGTbucketalloyevolutionshowingincreaseintem-peraturecapability[12]

80H,GTD–111DS,MGA1400DS,CM247LCDSGTD–444DS;

Ren´e5SC,CMSX–11SC

PWA1483

.

5[12−15].1.2.2

1960

GE

E

F

FSX–414

,

.

X–45

ECY768

.

,

,

.FSX–414

.,

GE

GTD–222

MGA2400

.

,

,

GE

GTD–222DS

Ren´e5

.

,16]6[12.

1.2.3

1973

,

,

7[17−23].

GH4413

,

.

7

16

K4537

,

.

1.2.4

,

:

(1)

:Cr

.

,

,

Cr

(

)

15%,

Cr

25%,

30%.

5%—10%Cr

,

5—

7

5

:

517

[12−15]5

Table5ChemicalcompositionsofhotcorrosionresistantNi–basedsuperalloysusedforbladesin

industrialgasturbine[12−15]

(massfraction,%)

AlloyUdimet500Udimet520Udimet700(Ren´e77)

Udimet710Udimet720IN738IN738LCIN939Mar–M421Mar–M247GTD–111MGA1400Ren´e80HDSCM247LCDSMGA1400DSGTD–111DSGTD–444DSRen´e5SCCMSX–4SCCMSX–11SCPWA1483SC

Cr18.019.015.018.018.015.816.022.515.58.416.014.014.08.313.314.09.87.06.515.012.8

Co18.512.018.515.015.08.38.319.010.010.08.010.09.510.010.09.57.58.09.03.09.0

Mo4.06.05.23.03.01.81.7–1.750.80.61.54.00.81.71.51.52.00.60.41.9

Ti2.93.03.55.05.03.63.53.71.751.03.42.74.81.02.44.93.5–1.04.24.0

Al2.92.04.32.52.53.53.51.94.255.54.04.03.05.54.03.04.26.25.63.43.6

C0.080.050.080.070.040.130.090.150.150.130.100.080.17–0.070.100.08––––

W–1.0–1.51.32.72.52.03.510.02.64.54.010.04.63.86.05.06.04.53.8

Ta–––––2.31.61.4–3.02.74.7–2.84.82.84.87.06.55.04.0

B0.0060.0050.030.020.040.010.010.010.0150.02–0.050.0150.0150.0170.010.009––––

OtherZr0.05––Zr0.05Zr0.04Zr0.09Nb0.7,Zr0.05Nb1.0,Zr0.1Nb1.75,Zr0.05Hf1.4,Zr0.06

–Zr0.03Hf0.75,Zr0.03

Hf1.5––

Hf0.15,Nb0.5Hf0.2,Re3.0Hf0.1,Re3.0Hf0.04,Nb0.1

NiBal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.

[12,16]6

Table6Chemicalcompositionsofhotcorrosionresistantsuperalloysusedforvanesinindustrialgas

turbine[12,16]

(massfraction,%)

AlloyX–40/HS–31FSX–414GTD484X–45Mar–M509ECY768IN792GTD222MGA2400GTD222DS

Ni10.510.010.010.510.010.0Bal.Bal.Bal.Bal.

Cr25.529.029.025.523.523.512.422.519.022.5

CoBal.Bal.Bal.Bal.Bal.Bal.9.019.019.019.0

Mo––––––1.9––2.3

Ti––0.2–0.20.254.52.33.71.2

Al–––––0.183.11.21.90.8

C0.500.250.350.250.600.600.120.100.170.10

W7.57.57.57.57.07.03.82.08.02.0

Ta––0.5–3.53.53.91.01.41.0

Nb–––––––0.81.0–

Zr––0.5–0.5–0.100.020.02–

B0.010.010.010.01––0.020.010.0050.008

Note:GTD484contains1.0%Hf

.

Cr

,

;

,

Ta:,

Re,

15%

α–Cr2O3.CrCr2O3,

.(2)

γ󰀁

50%,60%,

γ󰀁

;

,

Al+Ti

,

γ󰀁

65%—70%

σμTCP

,

50%,

.(3)

:

,

518

46

[17−23]7

Table7ChemicalcompositionsofhotcorrosionresistantsuperalloysdevelopedbyChina[17−23]

(massfraction,%)

AlloyGH4413K435K444K445K446K447K452K438K438GK4537K640SDZ438GDZ411DZ444DZ445DD408

C0.070.090.060.090.090.180.110.150.170.100.500.110.100.070.07<0.02

Cr14.515.915.913.916.019.021.016.015.815.525.516.014.015.013.216.0

Co–11.310.810.0–18.811.28.58.59.5Bal.8.59.59.510.08.5

W6.05.55.34.35.05.83.52.62.65.07.52.63.85.34.66.0

Mo3.32.02.01.53.5–0.61.81.71.5–1.81.52.01.7–

Al2.72.83.14.01.81.92.53.54.03.0–3.93.03.14.03.9

Ti2.04.64.62.72.43.53.53.33.63.5–3.94.94.62.43.8

Nb–0.20.2–1.10.90.30.90.72.0–0.7––––

Ta–––4.7–1.4–1.81.7––1.82.80.94.81.0

B0.020.020.080.030.010.0070.020.010.010.020.0050.010.020.0080.02–

NiBal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.Bal.10.5Bal.Bal.Bal.Bal.Bal.

Hf0.5,Y0.015

OtherV0.6,Ce0.020Mg0.01,Ce0.015,Zr0.05Ce0.015,Hf0.3,Zr0.05

Zr0.03

Fe15,Ce0.01,Zr0.01

Zr0.03Zr0.04Zr0.1P≤0.0005Zr0.05Mn0.8,Si0.8P≤0.0005

.

2013

[24]

.

,

,

1×103MW

,Cr

;

,

,

3

,

2010

(Al+Ti)

,γ󰀁,

50%;

Ta

,

(1.27—1.4)×104MW,2020

4.8%104MW,

(3—4)×

6.7%[10].

;

,

,

.

,

γ󰀁

TCP

,

,

,

.

,

.

,

(U–

.

235,Pt–233

Pu–239)

[25]

1.3

.,

.

.

,

.

,

.1954

,

,

.

1,

,

,

.

.

.

.

,

,

,

.

.

,

,

,

.

,

,

300

,.

MW20083

600MW

.

[26]

.,

,

,

11

,9078MW

,

6.84×1010kW·h,

1.15%.

1.99%.

.

1.3.1

11

,

112MW,

5

:

519

,

450

,

2

,

.

.

490

,

(

)

.

,

9Cr–1Mo.

,316,304

,

,

Incoloy800

[28]

.

.

,

,

.

,.

.(

Incoloy800

.

U,

)

.

(450—340

),

2.25Cr–1Mo

[26]

U

,

.

,

.

,

.

Pu–239

,

.

,

,

,

,,

.

.

[25]

.

:

.

;

;

(

)

;,

,

,

,

[26]

.

.

,

.

18–8

,

3a[27].

conel600

,

.Inconel600

In-,

.

3

Inconel718,

,

.

Incoloy625

1.3.2(1)

InconelX–750[26].

,

,

,Inconel600

.

Inconel600

,

,

8[28],

9[29−34].

9

.

800

.

3

Inconel690

,

Incoloy

,

,

Inconel600,Inconel690

Incoloy800

Fe–Ni

,

Incoloy800

Inconel690.

,

.

16%—30%Cr,

,

.

Inconel690

Incoloy800,

,

[26]

.

,Cr

Fe,Mo,Co

.

Al

,

In-Na.

,

coloy800

32.5%Ni,Ni

,

.

,

2.25Cr–1Mo.

Nb,

2.25Cr–1Mo–Nb,

9

.

InconelX–750

Inconel718

,

.

.2

Al+Ti+Nb

[28]8

Table8Thesuperalloysusedinvariousreactors[28]

TypeofreactorBoilingwaterreactorPressurizedwaterreactorNacooledfastbreederreactor

HTGB

Multipurposetemperaturegas–cooledreactor(assumption)

Material

Inconel600,InconelX–750,Haynes25

Inconel600,Inconel675,Incoloy800,Inconel690,Inconel718

Incoloy800,InconelX–750

Incoloy800,Inconel600,Inconel675,Inconel718,InconelX–750,HastelloyB

Inconel625,HastelloyX,Inconel617,Incoloy807,NewNo.13

520

46

4.2%

6.4%,

γ󰀁

γ󰀁󰀁+γ󰀁15%,

.

.

,2

19%

Cr,

(3)

11[30,31]

,

Inconel

.

7%19%Fe.Inconel718

,

718

HastelloyX–750

3%

Inconel600,Inconel

Mo

.

,

690

,

.

Incoloy800,

,

Inconel718,

.

.

(2)7

(4)

Inconel600,Inconel690

Incoloy800

33,35−38]10[10,.

,

,

5

[26]

:

316

TiN,Cr7C3,M23C6

C

,

M6,(SCC)

.

,σ,μLaves

,

Inconel600>Inconel690>Incoloy800,

γ󰀁󰀁δ

,

.(

9),

Ni,

2

GH4145

GH4169,

SCC

.

,

16%

󰀁󰀁14.5%

γ(γ󰀁󰀁+γ)

,

,

SCC

,

9

[29−34]Table9Chemicalcompositionsofsuperalloysusedinreactor[29−34]

(massfraction,%)

Alloy

CNiCrTiAlFeCoOtherInconel600(GH3600)≤0.15≥72.015.5≤0.50≤0.358.0––Inconel690(GH3690)≤0.04≥58.029.5≤0.50≤0.509.0≤0.10–Incoloy800(GH1800)

≤0.0532.521.0≤0.60≤0.60Bal.0.05–NewNo.130.0335.525.00.3750.30Bal.0.05–

Inconel718(GH4169)

≤0.04Bal.19.00.900.4018.5≤0.10Nb5.1,Mo3.1HastelloyB≤0.05Bal.≤1.0––5.5≤2.50V0.40,Mo28.0HastelloyX(GH3536)0.10Bal.22.0≤0.15≤0.5019.01.50W0.60,Mo9.0

InconelX–750(GH4145)

≤0.0473.015.02.500.806.8–Nb0.90Inconel6170.0755.022.0–1.00–12.5Mo9.0Inconel625(GH3625)

≤0.05≥61.021.50.200.202.5–Mo9.0,Nb3.7

Haynes25

0.10

10.0

20.0

3.0

Bal.

W15.0

107

[10,33,35−38]Table10Phaseconstitutesofsevensuperalloysusedinreactor[10,33,35−38]

Alloy

Afterstandardheattreatment

Afterlongtermaging

Inconel600(GH3600)γ,minorTiN,Cr7C3Agingat850

for1500h,notransition

Incoloy800(GH1800)γ,minorγ󰀁andM23C6

Agingathightemperature,minorδphase

Inconel690(GH3690)γ,minorM23C6

Noharmfulphase

Inconel625(GH3625)γ,minorTiN,NbCandM6C

Agingat650—900

,γ󰀁󰀁,δ,M23C6

HastelloyX(GH3536)

γ,minorTiN,M6CAgingat700—900,

M12CandM3B2,minorμandLavesorσ

InconelX–750(GH4145)

γ,14.5%γ󰀁,minorTi(C,N),

Agingat850

for1500h,

Nb(C,N),M23C6

needle–likeη–Ni3TiphaseInconel718(GH4169)

γ,16%(γ󰀁󰀁+γ󰀁),δ,NbC

Agingat790

for100h,γ󰀁󰀁→δ

Ni

5

:

521

[30,31]11

Table11Mechanicalpropertiesofsomesuperalloysusedinreactor[30,31]

AlloyRoomtemperatureσbMPa

σ0.2MPa2853722501185360815295490380

δ%454444214327705048

σbMPa56057451012756501050580910470

540

760

δ%414238184526685040

σbMPa260300235950435–440550350

Rupturestrengthof1000h,MPa

δ%7058832537–844534

––66195––165160105

30–30––50605043

15–13–––302019

760

σ0.2MPa2202701801065290725200415255

σ0.2MPa180160150740260–180415225

870

980

Inconel600Inconel690Incoloy800Inconel718HastelloyXInconelX–750Inconel617Inconel625Incoloy807

66073859514357851200740965655

.

,Inconel600

SCC

.

SCC,

2

NaOH

,

Ni≥65%.Cl−

2.2

O2

O2

NaOH

,

Inconel690

,

SCC

12[1,30,31,39].

Inconel718

Incoloy945

.Cr

Cr

,

93Inconel

,

.Inconel718γ󰀁+γ󰀁󰀁

16%,γ󰀁󰀁γ󰀁2.5—4.0,

690>Incoloy800>Inconel600.,Inconel690

,SCCInconel

γ󰀁󰀁

Inconel718

.Incoloy945Incoloy725

600.

,γ󰀁+γ󰀁󰀁Inconel718

,δIncoloy925

.

,

O,Cl

Pb,H,

pH,

,.

.

875MPa,

Incoloy

925,718

Inconel718.,,Incoloy945

Inconel

Inconel718,

,

,

Inconel718

22.1

.42%

Ni,

;

20%

,

,

Cr,

;

,,

:(1)

pH

,

,

;(2)

Cr,Mo.

W,

300g,

2.3

NaCl;(3)H2S

CO2MPa;(4)

,

,

10.5

14MPa;

Incoloy825,IncoloyG–3IncoloyC–276

,Inconel718,Incoloy925Incoloy

(5)

S

;(6)

0—218

725

,2

.

,

4—149

.,

,

,

,

Inconel718,

Incoloy825,Incoloy925

;

.H2S,CO2

C–276Monel

Incoloy8253[37].,

Incoloy

,

IncoloyC–276,Incoloy725,IncoloyG–3,

.

,

,

4

5[37].

522

46

3Incoloy825

IncoloyC–276

CO2/H2S

[37]

Fig.3ThecorrosionresistancesofIncoloy825alloy(a)andIncoloyC–276alloy(b)inCO2/H2Senvironment[37]

(corrosionrates≤0.05mm/a)

[1,30,31,39]12

Table12Chemicalcompositionofsuperalloysusedinpetroleumexploitation[1,30,31,39]

(massfraction,%)

AlloyInconel718Incoloy625Incoloy725Incoloy825Incoloy925Incoloy945IncoloyG–3IncoloyC–276Inconel600

C≤0.08≤0.10≤0.05≤0.05≤0.05≤0.05≤0.015≤0.02≤0.15

Cr19.021.521.021.521.520.522.015.515.5

Ni52.5Bal.Bal.42.0Bal.47.0Bal.Bal.Bal.

≤1.0Co–≤1.0––––≤5.0

W––––––≤1.53.3–

Mo3.19.08.53.03.03.07.016.0–

Al0.5≤0.40–––0.2–––

Ti1.0≤0.40–0.90–1.5–––

FeBal.≤5.08.0Bal.26.0Bal.20.05.58.0

Nb

Ta

OtherB0.004

––Cu2.3Cu2.0Cu2.0Cu2.0V≤0.35

(Nb+Ta)5.3(Nb+Ta)3.72.7–1.03.0

––––

(Nb+Ta)0.5––

4

[37]

5

[37]

Fig.4Selectionofcoldworkingstrengthenednickel

basesuperalloysaccordingtooilandgaswellenvironment[37]Fig.5Selectionofheat–treatmentstrengthenednickel

basesuperalloysaccordingtooilandgaswellenvironment[37]

5

:

523

2.4

,

,

,

Inconel718

.

2

,

.

1×104h

.

Incoloy925

Inconel718CXLDXLI

.

,

5.08×10−4m.

982

1×104h

,0.5%H2S900

,

XLO–B

.Incoloy825

1%H2S

.

(<500μm/a)

,

.Incoloy625

.Inconel600

:

Haynes

.

3

188,Stellite6BX–40;

738,IN739Nimonic80A;

IN617,IN657,IN

N155,RA330,

,

,.

(IGCC)

,

.

1972

1

IGCC,

9

[37]

.

:

(1)

.

.

,

;

,

;

,

(

).

(2)

(

),IGCC

52%.

(3)

,SO2

90%

,NOx50mg/m3,CO2

,

[2]

.

(4)

.

,

CO,H2,CH4

,

IGCC

.

,

;

;

,

;

[40]

,

,

.

,

,

.

(AMPS)

(TRI)

[41]

.()

24%H2,18%CO,12%CO2,39%H2O,5%CH4,0.5%—

1%H2S,

6.87MPa,

900—982

,

700—1×104h.

,

RA333

IN800.

[41]

,.

(982

)

(1%H2S)

,

Cr

Fe

Fe

.870—982

,

,Cr

20%,

25%.

44.1

,

,

.

,.

,

,

.

,

,

.

,

750

10×104h

,

,

,

.

.,

4%—7%

,

,

,

,

98—196kPa

650—750.

,

,

,

.

,

20

60

.1963,

.1999,CONMEC

FEX142

CorpusChristi,

37.3MW,

31.750t,

[42]

.

20

,

,

524

46

70

.1974,YL

,

[42]

3MW,1978

.——33MW

,

2003

7

[43]

.

,

,

K213

,

X40

Waspaloy,Nimonic90.

GH2132GH4738

,

A286

Waspaloy

.

13[44].

:

(1)

[45]

GH2132

:

ΔNv󰀁

=wNi−3wTi−3.5wAl−

1.7wSi−0.9wCr−4.7

(1)

,wM

,ΔNv

󰀁

M

.

ΔNv󰀁

>0,

σ

,ΔNv󰀁

<0,

σ

,

ΔNv󰀁>0.

(2)GH4738

Mg

,

,

,

.

,

GH4738

,

,.

(3)

K213

,

X–40

Waspaloy,Nimonic90

.

[46]

.

4.2

20

60

13

[44]Table13Thesuperalloysusedinfluegasexpander[44]

PartAlloy

DomesticproductDomestic

Abroad

(diameter,mm)VaneK213Investmentcasting

K640X40

InvestmentcastingBlade

K213Investmentcasting

GH4738

Waspaloy40,70

Nimonic90DiscGH2132A286720,760,850,930,1050,1200

GH4738

Waspaloy

850,950

GH2901Incoloy901

.

,

,

,

,

,

,

,

,

,

.

30%—100%,

4—13g/(kW·h),

,

.

,

.

,

,

550—850,

(3—11)×104r/min,103—

104h[46].

,

.

,

,

,

.

20

60

,

Inconel713

X–40,60

BC

B1914.

–787

36–

3.

,

CRM–6D

[46]

.

TM321[47].20

60

,

69

415

,

650

.1964

70

,

650

K213

,

,

.1965

,

K213

12V190B

,

.

(750—850

),

K418

(Inconel713C),

.

20

90

K491

,

B1914

[48]

,

,

1000

.

1990

,50

,

K491

[49]

,

.

VTR254,

454,564

714

.

290

130K491

,

.

[31,33]

1415[46,48].

K491

.

,

(0.01%)

,

0.1%

,

.K491

,

(

15);

,

,

5

:

525

[31,33]14

Table14Chemicalcompositionsofsomesuperalloysusedinchargingturbine[31,33]

(massfraction,%)

Alloy(servicetemp.)K213(750(850(1000(750

CNiCrCoFeAlTiWMoNbBZrOther

≤0.1)

0.08—))

0.55<0.08<0.081.00.2≤0.02

34—38Bal.Bal.

14—1612—149.5—10.5

––

Bal.–

1.5—3.0—4.0—2.06.5

4.01.0

–7.0—8.0

5.5–

7.0–

5.5—0.5—

––0.05—0.10

––––––Ce≤0.01Mn5

K418

3.8—1.8—0.005—0.05—5.22.8—3.3–––1.0

–––1.02.8–

0.150.080—0.12–≤0.05≤0.050.3

––––0.15≤0.04

K491

9.5—≤0.505.3—5.0—10.5Bal.–––

–Bal.Bal.Bal.

5.8–

X–40

0.45—9.5—24.5—)

11.533—3732—355

26.512—1612—1622

1.42.1–

3.23.2–

–787

0.7—2.4—2.0—

4.05.01.0

1.7—2.6—4.5—

(750

)3))

36–

(700(650

CRM–6D

[46,48]15

Table15Mechanicalpropertiesofsomesuperalloysusedin

chargingturbine[46,48]

,

,

,

.

(MPa)

Alloy

Tensilestrength

K213K418K491X–40

,

1000hrupture

strength

))))

431(700519(700294(850314(650294(700435(650333(650

.

.

731(700937(7001020(600515(650

))))

,

.

–78736–

490(750706(700537(650

)))

)))

3

.

CRM–6D

,

.

γ󰀁

,

γ+γ󰀁

;

,

.

TCP

;K491

,

,

,

,

,

,

.

,.

,

.K491

.

5

2020

.

,

.

,

.

.

2020

.

[1]ChenYS.PowerEng,2003;23:2615

(..2003;23:2615)[2]ChenJP.PowerEng,2009;29:1

..2009;29:1)(

[3]BianXJ,WangNN,CaoYJ.ZhejiangElectrPower,

2003;(2):21(,,.,2003;(2):21)

[4]MercklingG.JPressureVesselsPiping,2008;85:2

[5]WrightIG,TortorellipF.ProgramonTechnologyInno-vation:OxideGrowthandExfoliationonAlloysExposed

526

46

toSteamPaloAlto,CA:EPRI,2007

[6]HuangYL.ThermalPowerGeneration,2002;(2):2

(

.,2002;(2):2)[7]GuoJT,DuXK.ActaMetallSin,2005;41:1221

(

,.,2005;41:1221)[8]SmithGD,SizekHW.Corrosion2002.Houston:NACEInternational,200000256,1

[9]

ComprehensiveTopicalGroupintheEnergyScienceandTechnology,ChinaAssociationforScienceandTechnol-ogy.TheStudyontheDevelopmentofChineseEnergyScienceandTechnology,2004,4

(

.2020,2004,4)

[10]

GuoJT,HuZQ.The11thIntSymposiumonAdvancedSuperalloyProductionandApplication.Beijing:Metal-lurgicalIndustryPress,2007:3

(

,.——.:,2007:3)

[11]PolyzakisAI,koroneosC,XydisG.EnergyConversionManagement,2008;49:551

[12]

BalsoneSJ.Buckets,Nozzles.TheGasTurbineHand-book.USDepartment,OfficeofFossilEnergy,NationalEnergyTechnologyLaboratory,2006:411

[13]

ViswanathanR,ScheirerST.MaterialsTechnologyforAdvancedLandBasedGasTurbine.EPRLPaloAltoCA94304,USA:PowerTechAssociate,Media,PA19063.USA

[14]ViswanathanR.GasTurbineBladeSuperalloyMaterialsPropertyHandbook,TopicalReport,2001

[15]

WallJB,HanisK.SuperalloysinIndustrialGasTurbines–anOveriew,presentedatthe9thworldconfer-enceoninvestmentcasting,oct.13–16,1996,CAUSA[16]

DataofMitsubishiCompany.TheChemicalCompositionsTable4,2,1ofSuperalloysUsedforTurbineRotorBlade.

(

.4,2,1)[17]

ZhangY,TuGY.In:ShiCX,LuD,RongK,eds.,FortyYearsofSuperalloyR&DinChina,Beijing:ChinaScienceandTechnologyPress,1996:88

(,.,,,.:,1996:88)

[18]

GuoJT.AStudyontheMaterialsandTechnologyofHigh–TemperatureTurbineandGuideVaneUsedforNavalGasTurbineEngine,2002,1,29.

(

.,2002,1,29)

[19]

GuoJT.StudyonUtilizationofRevertAlloyK640S(Stellite31).1996,9

(

.K640S(Stellite31).19969)[20]

ZhouLZ,GuoJT.TheDevelopmentofSuperalloyK445UsedforGasTurbineCompressorBlade,2005,11

(

,.K445,200511)

[21]

YuanC,GuoJT.TheDevelopmentofSuperalloyK447UsedforGasTurbineGuideVane,2005,11

(

,.K447,200511)

[22]

GuoJT,ZhouLZ,YuanC.TheDevelopmentofSpecialMaterialsUsedforNavalGasTurbineEngine,2004,11

(,

,

.

,2004

11)

[23]

WuYN,KePL,WangQM,SunC,WangFH,LouLH,WenLS.JIronSteelRes,2003;15(7):219

(

,,,,,,.,2003;15(7):219)

[24]

XiaoJX,GaoSK,HanWK.EnergyChina,2009;31(3):5

(

,,.,2009;31(3):5)[25]HofmeisterJ,WaataC,StarflingerJ,SchulenbergT,Lau-rienE.NuclearEngDes,2007;237:1513

[26]

YangWD.NuclearReactorMaterials.Beijing:AtomicEnergyPress,2006:3

(

..:,2006:3)[27]

HuZQ,GuoJT.In:Lecomte–BeckersJ,Car-tonM,SchubrtF,EnnisPJ,eds.,MaterialsforAdvancedPowerEngineering2006,ForschungszentrumJ¨ulichGmbH.2006:Part1,189

[28]

HasegawaM,TranslatedbySunSR.NuclearReactorMa-terialsHandbook.Beijing:ChinaElectricPowerPress,1987:2

(

,..:,1987:2)

[29]

ZhuRZ,LuYX.HeatResistantSteelsandSuperalloys.Beijing:ChemicalIndustryPress,1996:8

(

,..:,1996:8)

[30]

GangYM.ChinaStainlessSteelCorrosionHandbook,Beijing:MetallurgicalIndustryPress,1992:11

(

..:,1992:11)

[31]

LuSY.NickelBaseandIron–NickelBaseHeatResistantAlloys.Beijing:ChemicalIndustryPress,1989:10

(

..:,1989:10)

[32]

KutzM,TranslatedbyChenXB,ZhangSL.HandbookofMaterialsSelection,Beijing:ChemicalIndustryPress,2005:3

(KutzM,

,..:,2005:3)

[33]

YeJ.AmericanNickelBaseSuperalloys.Beijing:SciencePress,1978:5

(

..:,1978:5)[34]

TheEditorialBoardofChinaAeronauticalMaterialsHandbook.ChinaAeronauticalMaterialsHandbook.2ndEd,Vol.2,Beijing:StandardsPressofChina,2002:186

(

.()2.:,2002:186)

[35]LiQ,ZhouBX.ActaMetallSin,2001;37:8

(

,..,2001;37:8)[36]

InstituteofMetalResearch,ChineseAcademyofSciences.AMicrodissectionAnalysisofEngineTurbineDisc,1986:9

(

..1986:9)

[37]

PatelS.Corrosion–ResistantNickel–BaseAlloysforOil&GasService.InternationalSymposiumonAd-vancedSuperalloys–ProductionandApplication,May21–

5

:

527

25,2007.Shanghai,China

[38]

GuoJT.MaterialsScienceandEngineeringforSuperal-loysVol.01,ApplicationBasicTheory.Beijing:SciencePress,2008:18

(

.(),.:,2008:18)

[39]

KangCG.In:GanY,TianZL,DongH,FengD,WangXL,eds.,NickelandIronBaseCorrosionResistantSuer-palloys.ChinaMaterialsEngineeringCanon,Vol.02,Ma-terialsEngineeringforIronandSteel(Vol.01).Beijing:ChemicalIndustryPress,2006:525

(

.:,,,,..,2,

(),:,2006:525)

[40]

DaiPK,ChenJP.DevelopmentofNewTechniquesinThermalPowerGeneration,2004;(1):1

(

,.,2004;(1):1)[41]

ZhuRZ,LuYX.HeatResistantSteelsandSuperalloys.Beijing:ChemicalIndustryPress,1995:234(,.,:,1995:234)

[42]LiKX,LiuLS.PetKnowl,2007;(1):29

(

,.,2007;(1):29)[43]LiZX,ZhangY.PetRefineryEng,2004;34(11):44

(

,.,2004;34(11):44)[44]

ZhouRF,HanYF,LiSS.HighTemperatureStruc-turalMaterials.Beijing:NationalDefenceIndustryPress,

2006:49

(

,,..:,2006:49)

[45]

DepartmentofSuperalloysatBeijingIronandSteelInsti-tute.GH132.Beijing:NationalDefenceIndustryPress,1980:22

(

.GH132,:,1980:22)

[46]

HuangXY,WangD.In:ShiCX,LuD,RongK,eds.,FortyYearsofSuperalloyR&DinChina,Beijing:ChinaScienceandTechnologyPress,1996:92

(,.,,,,:,1996:92)

[47]

ShiC.X,LiHD,ZhouL.MaterialsScienceandEngi-neeringHandbook(Vol.01).Beijing:ChemicalIndustryPress,2004:241

(

,,.().:,2004:241)

[48]

TheEditorialBoardofChinaAeronauticalMaterialsHandbook.ChinaAeronauticalMaterialsHandbook(theSecondEdition)Vol.02.WroughtSuperalloysandCastSuperalloys.Beijing:StandardsPressofChina,2002:547

(

.(2)——.:,2002:547)

[49]

LouLH.PersonalCommunication,2009,5

(

.,20095)

因篇幅问题不能全部显示,请点此查看更多更全内容

Top