三次求根公式为卡尔达诺公式。卡尔达诺公式是一个著名的求根公式,指实系数一元三次方程的求根公式x=α+β,式中且αβ=-p/3,此公式也可以应用于复系数三次方程中。卡尔达诺公式(Cardanoformula)亦称卡丹公式,是三次方程的求解公式,给出三次方程x3+px+q=0的三个解为x1=u+v,x2=uw+vw2,x3=uw2+vw。由于三次方程y3+ay2+by+c=0经过未知量的代换y=x-a/3后,可化为形如x3+px+q=0的三次方程。因此,运用卡尔达诺公式可解任意复系数的三次方程,此公式实为塔尔塔利亚(TN.artaglia)于1541年首先发现,但未公开发表,却在允诺保密的央求下告诉了卡尔达诺(G.Cardano),后者于1545年将这一结果发表在自己的著作《大法》里,后人遂称为卡尔达诺公式,沿袭至今。